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Abstract
Mild cognitive impairment (MCI) is a pre-existing state of Alzheimer’s disease (AD). An accurate prediction on the con-
version from MCI to AD is of vital clinical significance for potential prevention and treatment of AD. Longitudinal studies 
received widespread attention for investigating the disease progression, though most studies did not sufficiently utilize the 
evolution information. In this paper, we proposed a cerebral similarity network with more progression information to predict 
the conversion from MCI to AD efficiently. First, we defined the new dynamic morphological feature to mine longitudinal 
information sufficiently. Second, based on the multiple dynamic morphological features the cerebral similarity network was 
constructed by sparse regression algorithm with optimized parameters to obtain better prediction performance. Then, leave-
one-out cross-validation and support vector machine (SVM) were employed for the training and evaluation of the classifiers. 
The proposed methodology obtained a high accuracy of 92.31% (Sensitivity = 100%, Specificity = 82.86%) in a three-year 
ahead prediction of MCI to AD conversion. Experiment results suggest the effectiveness of the dynamic morphological 
feature, serving as a more sensitive biomarker in the prediction of MCI conversion.

Keywords Mild cognitive impairment · Dynamic morphological features · Elastic network · Magnetic resonance imaging

Introduction

Mild cognitive impairment (MCI) is an intermediate state 
between normal aging and dementia [1]. Studies have shown 
that MCI subjects tend to progress to probable Alzheimer’s 
disease (AD) at a rate of 10–15% each year [2]. MCI can be 
divided into two subtypes, converting MCI and non-convert-
ing MCI. The MCI converter (MCI-C) indicates the group of 
patients who is likely to progress to AD in a short period of 
time, but the MCI non converter (MCI-NC) remains stable 
for a certain period of time, with smaller risk of conversion 
to AD than the former [3]. Identifying these two different 
kinds of MCIs can predict the conversion from MCI to AD 
as early as possible, which is helpful for the prevention and 
treatment of AD.

Neuroimaging has been proven to be a useful tool 
to understand the pathology of AD and MCI as well as 
many medical assistant diagnosis systems based on which 
have been applied in clinical practice [4]. In previous AD 
mechanism studies, structural magnetic resonance imag-
ing (s-MRI) was the most widely used imaging tool in 
AD detection and prediction, with wide practicality, high 
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diagnostic accuracy, and moderate cost [5]. However, 
s-MRI can only reflect the current state of the structure 
and further mining of s-MRI information will enhance its 
ability of clinical application. Many cross-sectional studies 
obtained classification accuracy of more than 95% which 
has achieved practical results in the diagnosis and iden-
tification of AD [6, 7]. Unfortunately, this method is not 
so effective in MCI conversion prediction. Because MCI 
is a state of conversion process, disease progression over 
time will be more indicative than static assessment using a 
snapshot [8, 9]. Longitudinal information has been added 
to the scope of research, while the existing longitudinal 
studies mostly selected data based on the longitudinal cri-
teria and used only baseline data for further analysis [10, 
11]. However, the progression information contained in 
follow-up time points, which is of great importance for 
studying progressive diseases [8], is not utilized effec-
tively. Therefore, taking the evolution information into 
consideration is critical to improve the performance for 
MCI conversion prediction.

In addition to the original features acquired by MRI, 
brain structural network measures which are also referred 
to as anatomical connection patterns between different brain 
regions [12], providing new insights into brain network 
organization, topology, and complex dynamics, as well as 
a further understanding of the pathogenesis of the disease 
[13–15]. Previous studies show the significant differences 
in the measures of structural network between MCI subjects 
and Normal Controls (NC) [16, 17]. In the brain network 
based on cortical thickness structure, MCI group shows the 
decreased nodal centrality in the left lingual gyrus, middle 
temporal gyrus (MTG) and the increased nodal centrality 
in the precuneus cortex compared with NC, in which the 
nodal centrality is estimated by the betweenness, measur-
ing the importance of a node in the network [16]. Simi-
larly, the network properties such as small world attributes, 
local efficiency and degree have also greatly improved the 
predictive performance of MRI images [17]. In the studies 
of brain structure, the methods summarized the anatomical 
development of the entire brain into several scalar meas-
ures, such as cortical thickness, cortical volume and hip-
pocampus, etc. [18, 19]. Researchers studied the morpho-
logic changes of AD and MCI by voxel-based analysis [20, 
21], or through analyzing region of interests (ROI) which is 
more targeted [15, 18, 19]. However, previous studies usu-
ally explored only a single measure (volume and cortical 
thickness) or several ROIs, ignoring the multiple morpho-
logical changes in the whole brain with the progress of AD 
[22, 23]. For these ROIs, research on their similar variation 
from a network perspective is focused rarely, though exist-
ing studies showed that many brain areas have the similar 
abnormal morphological patterns as the progression of AD 
[15, 24]. Recently, sparse learning techniques have attracted 

increasing attention due to their excellent performances in 
a series of neuroimaging applications on different modali-
ties [25, 26]. A voxel-based sparse classifier on basis of a 
l1-norm regularized linear regression model is employed to 
classify AD and MCI which achieves significant results [27]. 
Elastic networks are used to identify neuroimaging and pro-
teomic biomarkers of AD and MCI [28].

This paper proposes a novel method to address the above 
problems, namely: limited evolution information, lacking 
similar variation research, and single measure studies by 
constructing longitudinal dynamic multi-morphological 
network (LDMN) using s-MRI data. Our hypothesis is 
that the dynamic morphological feature is a more sensitive 
biomarker and the sparse regression cerebral network con-
structed by the multiple dynamic morphological features can 
achieve a better performance in MCI conversion prediction. 
We highlight the contribution of this paper as follows: (1) 
Based on the longitudinal data to further mine the image 
information of s-MRI, we defined the dynamic morphologi-
cal feature benefiting from the progression information. (2) 
We selected the subjects with 4 years follow-up and chose 
four time points without conversion, extracting five cerebral 
cortex measures closely related to AD progression and cal-
culating their dynamic features. (3) We adopted LASSO and 
elastic network to perform sparse regression on the multiple 
dynamic morphological features to construct the cerebral 
similarity network at different phases, employing the two-
level tuning method to optimize parameters of sparse regres-
sion to make more excellent prediction results. Finally, we 
classified MCI-C and MCI-NC based on the commonly used 
network attributes, utilizing the method combining leave-
one-out cross-validation and support vector machine (SVM) 
to train and evaluate the classifiers.

The remainder of this paper mainly includes the following 
parts. Section "Material " illustrates the selection of the sub-
jects and the pre-processing of the images. Section "Meth-
ods" describes the definition and calculation of the dynamic 
morphological feature, the methods of network construction 
and classification. Section "Results" reports the experimen-
tal results. Section "Discussions" discusses the achieved 
results and the clinical significance. Finally, Sect. "Conclu-
sion" gives the conclusion.

Material

Image data

The subjects were obtained from the publicly open Alz-
heimer’s disease neuroimaging initiative (ADNI) database 
(https ://adni.loni.usc.edu/) [29]. The ADNI was launched 
in 2003 by the National Institute on Aging, the National 
Institute of Biomedical Imaging and Bioengineering, the 

https://adni.loni.usc.edu/
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US Food and Drug Administration, private pharmaceutical 
companies, and several non-profit organizations [25].

MCI is determined based on routine cognitive behavio-
ral tests such as Mini-Mental-State -Examination (MMSE) 
scores, between 24 and 30, and Clinical Dementia Rating 
(CDR) score of 0.5. Using month18 as a reference point, 
subjects converted to AD before month 18 (including month 
18) were excluded. The MCI-C included subjects who con-
verted to AD between month 18 and month 48. Similarly, 
subjects were marked as MCI-NC once no conversion 
occurred in the period. We selected subjects with s-MRI data 
at four longitudinal time points without conversion, baseline 
(BL), 6th month (M6), 12th month (M12) and 18th month 
(M18). Seventy-eight participants were chosen, including 
35 (75.3 ± 6.7) MCI-NC and 43 (73.6 ± 7.6) MCI-C. Their 
MMSE scores were from 24 to 30 and the score of CDR was 
0.5. Details of the characteristics of the subjects selected 
are presented in Table1. To evaluate the specific effects 
that age and gender might have on the classification results, 
we performed the Two-sample T test on age and the Chi-
square test on gender, and found no statistical differences 
( p = 0.31 > 0.05 ; p = 0.61 > 0.05 ) [30].

Pre‑processing

The images of the subjects were acquired by the T1 scanner 
from the ADNI library. We chose the Neuroimaging Infor-
matics Technology Initiative (NIfTI) format, which had 
undergone spatial distortion correction processing due to 
gradient nonlinearity and B1 field non-uniformity.

All the structural images were pre-processed with Free-
Surfer v5.3.0 (http:// surfer.nmr.mgh.harvard.edu) [31] run-
ning under Matlab2012 on the CentOS 7.5.1804 operating 
system. The main steps of the pre-processing are recapitu-
lated in the following contents. Firstly, the structural images 
were performed non-uniformity artifacts correction. Sec-
ondly, coordinate transformation was implemented [11, 32]. 
Next, the corrected images were segmented into gray mat-
ter, white matter, cerebrospinal fluid and other background 
categories. Then, the reconstruction of grey/white matter 

boundaries was followed [32]. After completing the corti-
cal models, surface expansion, registration to the average 
template with group subjects’ information were executed 
[31, 33]. Finally, cortical features were extracted, including: 
cortical thickness (CT), surface area (SA), volume (VOL), 
sulcal depth (SD), and gyrus height (GH) [34]. A full width 
at half maximum (FWHM) of 30 mm Gaussian kernel was 
used for smoothing the images [35]. The segmentation was 
performed automatically whose errors were visually checked 
in FreeView and manually corrected [32]. The technical 
details of pre-processing by Freesurfer have been published 
online (https ://surfe r.nmr.mgh.harva rd.edu/fswik i/FreeS 
urfer  MethodsCitation).

The CT reflects the closest distance between the white 
matter and the grey matter surface in each vertex [36].The 
SA is the average of the surrounding triangles at each vertex. 
The volume is a product of CT and SA [37]. The distance 
below (above) the average surface at each vertex reflects the 
depth (height) of sulci (gyrus) [38].

Methods

The overall structure of the proposed prediction framework 
is depicted in Fig. 1. The method mainly consists of fol-
lowing steps: the pre-processing of images, the dynamic 
morphological feature calculation, multi-morphological 
similarity network construction, and network attributes 
classification.

The dynamic morphological feature

The developments of AD and MCI are often accompanied 
by the atrophy of brain regions and the decreased complexity 
of whole cortex with a shallower depth of the sulcus [39]. 
Surface area is also one of the important indicators to quan-
tify changes in the brain structure [40]. Studies have shown 
that the use of multiple cortical measures can improve AD 
classification accuracy [32, 41]. Therefore, in addition to 
the two commonly used indicators, CT and VOL, in MCI 
conversion prediction, SD, GH and SA were also added. 
We partitioned the cerebral cortex data pre-processed by 
FreeSurfer according to the multi-modal parcellation (MMP) 
atlas [42], excluding the subcortical structures.

The static feature was the mean of the morphological 
measure in each brain region at a single time point, which 
was commonly used in cognitive science research based on 
the cerebral cortex [15]. To make full use of the progress 
information contained in the longitudinal time points, we 

(1)Dj =

Nk∑

n=1

(
Baselinekn −Mkn

i

Baselinekn

)/
Nk

Table 1  Demographic and clinical data for all participants

SD standard deviation, MCI-C Mild cognitive impairment converter, 
MCI-NC Mild cognitive impairment non-converter. *Chi-square test. 
#Two-sample T test. MMSE Mini-mental state examination, CDR 
clinical dementia rating

Means ± SD, n MCI-C MCI-NC p value

Sample size 43 35 –
Male/female 35/8 30/5 0.611*
Age  (years) 73.6 ± 7.6 75.3 ± 6.7 0.314#

MMSE score 27.0 ± 1.4 28.1 ± 1.4 0.01
CDR score 0.5 0.5 –

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurfer
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurfer
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proposed the dynamic morphological feature relative to the 
static feature. For the definition of the dynamic feature, as 
shown in (1), where Balelinekn was the morphological meas-
ure value at the nth vertex in the kth brain region at baseline 
time point and Mkn

i
 denoted the value at the nth vertex in 

the kth brain region of the measure in the ith month. The 
number of vertex in region k was defined as Nk.Dj stood for 
the dynamic morphological feature in phase j on the brain 
region level. Dynamic morphological features of five meas-
ures (CT, SA, VOL, SD and GH) were calculated according 
to Eq. (1). Because we selected four follow-up time points 
of subjects, four static features and three dynamic features 
were obtained on each cortical measure. To select a more 
superior phase (D1, D2 or D3) for the network construction 
and compare the ability of the static and dynamic features, 
the effectiveness of the static and dynamic morphological 
features to identify MCIs were evaluated by classification 
performances.

Network construction

In previous studies, a multifeature-based network (MFN) 
with LASSO algorithm was proposed and achieved praise-
worthy results in AD and NC classification [32]. Although 
LASSO regression has been widely applied in many stud-
ies, it also has limitations. LASSO is not robust enough as 
it selects only one random feature and neglects the others, 
especially when the variables are high correlation [43]. For 
instance, if there is a group of brain areas with high pair-
wise correlation, LASSO algorithm tends to select only one 
region from the group, regardless of which one is selected. 
Obviously, LASSO can-not solve the grouping effect prob-
lem, and may miss some relevant brain regions during the 
process of selecting related areas within the designated 
regions [28]. The elastic network is an extension of LASSO 
regression that is robust to extreme correlations among the 
predictors, making the result more credible [43]. Similar 

Fig. 1  Illustration of the proposed method. a, b, c Represents the 
procedure of pre-processing. d Represents the calculation and extrac-
tion of the dynamic morphological features of each measure. e, f, g, 
h Represent the construction of multi-morphological similarity net-
work and the calculation of network attributes. i Represents the leave-

one-out cross validation. BL, baseline. M06, 6th month. M12 12th 
month. M18, 18th month. D1, dynamic features in the first phase. D2, 
dynamic features in the second phase. D3, dynamic features in the 
third phase
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to LASSO, the elastic network can also solve the problem 
of sparse representation. Therefore, we adopted LASSO 
and elastic-network regressions for individual network 
construction.

As shown in (2), the single penalty term l1 was used in 
LASSO regression. The elastic network had the mixed pen-
alty term of l1 norm (LASSO) and l2 norm (ridge regres-
sion), which could be expressed as (3) regularized objective 
function optimization problem:

We  r e p r e s e n t e d  s i n g l e  p a r t i c i p a n t  a s 
X =

[
x1,x2, … xm

]T
∈ Rm×d with m brain regions. Since the 

five kinds of morphological measures and the MMP atlas 
were used [42],m was 358 (excluding subcortical tissues) 
and each xm stood for the mth region containing five mor-
phological measures (d = 5). Every xm was a target vector 
and could be expressed by a linear combination of other 
m − 1 prediction vectors [32]. Before the construction of the 
cerebral similarity network, we normalized the five kinds 
of dynamic morphological features. The commonly used 
Min–Max normalization method was employed whose prin-
ciple is as (4) shown [44]. Xmax represented the maximum 
value and Xmin meant the minimum value of each row in the 
original matrix. X was defined as each element of the row in 
the matrix that needed to be normalized. Ymax , Ymin denoted 
the maximum and minimum values of the range that needed 
to be standardized, respectively.

The regression model was set to y = Aw , where y repre-
sented the target vector, A ( A =

[
x1, x2,… xi−1, xi+1,… xm

]
 ) 

was a matrix contained all regional vectors except xi , and w 
denoted the regression coefficient. We obtained the sparse 
solution by solving the corresponding optimization problem 
shown in (6).

To optimize the network ability and promote the accu-
racy of the classification, the two-level tuning method was 
proposed for the majorization of regression parameters. 
We first varied a range for the parameters, and based on the 
first classification results, delineated an elaborate range for 
fine-grained optimization. Referred to the previous stud-
ies for model parameters setting in LASSO and elastic net-
work [5, 32], we constructed the longitudinal dynamic 

(2)min ‖xm − Am�m‖ + �‖�m‖1

(3)min ‖xm − Am�m‖ + �1‖�m‖1 + �2‖�m‖22

(4)
Y =

[(
Ymax − Ymin

)
×
(
X − Xmin

)]
∕
[
Xmax − Xmin

]
+ Ymin

(5)y = Aw

(6)min
w

‖y − Aw‖ + �1‖w‖1 + �2‖w‖22

multi-morphological network with parameters in this range 
( �1 ∈

{
� ×

[
10

−4
, 10

−3
, 10

−2
, 10

−1
]}
, � ∈ {2,3, 4,6, 8,9}, �2

∈
{
10

−3
, 10

−2
, 10

−1
, 10

0
, 10

1
, 10

2
, 10

3
}
 ) of elastic network  

first. For contrasting the performance of LASSO and elastic 
network, the λ of LASSO took the same range with λ1 of elastic 
network ( λ ∈

{
� ×

[
10−4, 10−3, 10−2, 10−1

]}
, � ∈ {2,3, 4,6, 8,9} ). 

Then, we made a fine-grained division in the smaller range 
according to the distribution of the parameter optimiza-
tion results in the first step, and this will be discussed in 
Sect. "Results" in more detailed. The SLEP package was used 
to solve the optimization problem [45]. We set the parameter 
of the SLEP package opts.rFlag = 1 to make the maximal 
value of λ1 andλ2 , above which shall obtain the zero solution. 
Figure 1e and f show the network construction process, since 
each row of the sparse solution came from different regression 
processes, and the solution finally obtained was a 358 × 358 
asymmetric matrix.

Previous research showed that network attributes present 
obvious advantages in classification [16, 17]. We calculated 
the common used network attributes, including clustering 
coefficient (CC), network degree (Deg), global efficiency 
(GE) and edge density (ED), of LDMN with the Brain Con-
nectivity Toolbox (BCT) for classification [46]. The CC 
indicates the degree of aggregation of nodes in a graph. 
The Deg is the total number of edges connected to a node 
[47].The GE measures the efficiency of distant information 
transmission in the network [48]. The ED is the fraction of 
present edges to possible edges [46, 49].

Classification and evaluation

SVM is a supervised multivariate classification method 
that identifies the optimal hyper plane of the maximum 
margin [50]. SVM usually need to map samples to a high-
dimensional feature space, so that the samples are linearly 
separable, and the kernel function determines the mapping 
form [51]. Common ones include the linear kernel, the radial 
basis function (RBF) kernel, the polynomial kernel, etc.
[52]. Among them, the linear kernel is more robust to high-
dimensional features, and the RBF kernel is more suitable 
for low-dimensional features [51, 52]. In our study, accord-
ing to the dimension differences in different types of features 
and data characteristics [52, 53], support vector machines 
based linear kernel and RBF kernel were used to classify the 
MCI-C and MCI-NC on the basis of their multiple dynamic 
morphological features, where we employed F-score for fea-
ture selection. Considering the small number of participants, 
leave-one-out cross validation (LOOCV) should be adopted 
to obtain a credible estimate for a classification algorithm 
[54–56]. In each LOOCV trial for n samples, n-1 samples 
were selected as training set elements and the leave-one sam-
ple was used for the testing step. In addition, a tenfold cross 
validation was repeated ten times to evaluate the robustness 
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of LOOCV, where the subjects were divided into 10 folds 
randomly and each fold was used for testing and the rest for 
training [57, 58]. A permutation test was conducted to esti-
mate the statistical significance of the observed classification 
accuracy. Concretely, both the entire LOOCV and tenfold 
cross-validation procedures were repeated 5000 times using 
randomly shuffled labels [47, 59, 60].

F-score selected significant features by measuring the 
recognition ability of features in the classification of two-
type pattern recognition problems. The training sample 
xk ∈ Rn, k = 1,2…, was divided into two categories: positive 
and negative, where the number of positive samples was n+ 
and the negative sample was n− . The score of the ith feature 
could be expressed as:

−
xi was the average eigenvalue of the ith feature over the 

entire training set. 
−
xi

(+)

 meant the average eigenvalue of the 
ith feature in the positive class while 

−
xi

(−)

 represented the aver-
age eigenvalue in the negative class. x(+)

k,i
 was defined as the 

eigenvalue of the ith feature on the kth positive class sample. On 
the contrary, the negative class sample was described by x(−)

k,i
.

(7)

F(i) =

�
x
(+)

i
− xi

�2

+
�
x
(−)

i
− xi

�2

1

n+−1

∑n+
k=1

�
x
(+)

k,i
− x

(+)

i

�2

+
1

n−−1

∑n−
k=1

�
x
(−)

k,i
− x

(−)

i

�2

Given a training set {f i, yi} , where f i was the eigenvector 
and yi was the label of the subject i(MCI-C or MCI-NC). f i 
was mapped to high-dimensional feature spaces via kernel 
functions as �

(
f i
)
 . The optimal SVM model {w, b} was cal-

culated by minimizing the cost function [8]. {w, b} were the 
learned parameters of the model. Equations (9) and (10) are 
the digital representations of linear and RBF kernel func-
tions, respectively. Here we implemented the classification 
via the LIBSVM toolkit [61].

Results

Classification performances

On each cortical measure, we calculated the static features at 
four time points and the dynamic features of its three stages, 
comparing the classification performances of the dynamic 

(8)

{w, b} = argmin ‖w‖2
2
+ c

N�

i=1

max
�
0, 1 − yi

�
⟨w, �

�
fi
�
⟩ + b

��

(9)K
(
fj, fi

)
= f T

j
fi

(10)K
(
fj, fi

)
= exp

(
−g

‖‖‖fj − fi
‖‖‖
2
)
, g > 0

Fig.  2  The classification results of the five cortical measures in the 
comparison. The static and dynamic features are represented by dif-
ferent colors. The triangle represents the best result in dynamic fea-

tures and the rhombus represents the best result in static features. CT 
Cortical thickness. SA Surface area. VOL Volume. SD Sulcal depth. 
GH Gyrus height
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and static features based on the measure values directly. The 
results demonstrated that the dynamic morphological feature 
was superior to the static feature in each cortical measure on 
the optimal results, as shown in Fig. 2. More detailed, SD, 
GH and VOL obtained the best classification accuracy in D2 
phase, while CT and SA performed best in D3 phase. The 
global (among CT, SA, VOL, SD and GH) best accuracy 
83.33% was achieved in CT as the most common cortical 
indicator in MCI and AD classification research. Therefore, 
the dynamic morphological features of phases D2 and D3 
were selected for the next cerebral similarity network con-
struction. In our classification experiments based on LDMN, 
we employed accuracy (ACC), sensitivity (SEN), specific-
ity (SPE), and area under the curve (AUC) obtained from 

the receiver operating characteristic (ROC) to evaluate the 
performance of the classification.

In each of the selected phases (D2 and D3), we con-
structed the LDMN with LASSO (L-LDMN) and the 
LDMN based on elastic network (E-LDMN), optimizing 
the parameters of sparse regression for all networks. Next, 
the network properties (CC, Deg, GE, ED) were computed 
as features to train classifiers and then the concatenation of 
them was also used for classification.

The best classification accuracy 92.31% was obtained 
in the E-LDMN of D2 stage in results of LOOCV. Except 
the global efficient of L-LDMN in D3 and the edge density 
in each stage, all classification results passed the permuta-
tion test (p < 0.05). As depicted in Fig. 3 and Table 2, the 
classification performances in D2 phase were always better 

Fig. 3  The accuracy statistics of the four classification results based 
on network properties, including the clustering coefficient (CC), the 
degree of network (Deg), the global efficiency (GE), the edge density 
(ED) and the combination of the network properties (NP)

Table 2  Classification performances of LDMN based on LASSO and elastic network in stage D2 and D3

ACC Accuracy, SEN Sensitivity, SPE Specificity, AUC Area under the curve, CC Clustering coefficient, Deg Degree, GE Global efficiency, ED 
Edge density, NP Combination of Network properties, RBF Radial basis function

Kernel ACC L- LDMN-D2 λ1 p ACC E- LDMN -D2 λ1 λ2 p

SEN SPE AUC SEN SPE AUC 

CC Linear 84.65% 100% 65.71% 0.6571 0.009 0.0002 92.31% 100% 82.86% 0.8465 0.009 0.001 0.0002
Deg Linear 60.26% 67.44% 51.43% 0.5355 0.009 0.0218 67.95% 93.02% 37.14% 0.6841 0.009 0.001 0.0006
GE RBF 58.97% 72.09% 42.86% 0.5894 0.009 0.0456 57.69% 90.70% 17.14% 0.4807 0.009 0.001 0.0426
ED RBF 32.05% 51.16% 08.57% 0.2993 0.009 0.9990 46.15% 83.72% 00.00% 0.4478 0.009 0.001 0.7401
NP Linear 71.79% 74.42% 68.57% 0.7229 0.009 0.0004 84.62% 90.70% 77.14% 0.9037 0.009 0.001 0.0002

Kernel ACC L- LDMN-D3 λ1 p ACC E- LDMN -D3 λ1 λ2 p

SEN SPE AUC SEN SPE AUC 

CC Linear 78.25% 100% 51.43% 0.5694 0.0008 0.0002 87.18% 100% 71.43% 0.8027 0.05 1 0.0002
Deg Linear 79.48% 88.37% 68.57% 0.8306 0.0008 0.0002 73.08% 86.05% 57.14% 0.7548 0.05 1 0.0002
GE RBF 30.77% 51.16% 05.71% 0.1528 0.0008 0.9998 60.26% 97.67% 14.29% 0.2492 0.05 1 0.0122
ED RBF 37.18% 67.44% 00.00% 0.0000 0.0008 0.9808 51.28% 93.02% 00.00% 0.1548 0.05 1 0.3831
NP Linear 73.08% 83.72% 60.00% 0.7542 0.0008 0.0002 76.92% 83.72% 68.57% 0.7508 0.05 1 0.0002

Fig. 4  ROC curves of four classification results based on the cluster-
ing coefficients
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than D3 phase both in L-LDMN and E-LDMN which is 
also displayed in the ROC curves (Fig. 4). In addition, the 
method using elastic network obtained a better performance 
than LASSO. Figure 5 shows that only less than 10% of the 
features were selected when reaching the best accuracies in 
results of L-LDMN and E-LDMN. The tenfold cross valida-
tion was performed on the optimal feature of each LDMN 
in LOOCV results to estimate the robustness of results. As 
shown in Table 3, although the accuracy is slightly lower 
than that of LOOCV, the best result still expressed in D2 
of E-LDMN, and all results passed the permutation test 
(p < 0.05).

Effect of regression parameters

Existing research showed that parameter � of regression 
algorithm has great impact on the network topology [62]. 
The size of � is positively related to the network sparsity and 
negatively related to the noise content, affecting the credibil-
ity of the network and the performance of the classification 
ultimately.

The method of two-level tuning was used for parameters 
optimization. Firstly, the previous sparse regression studies 
were referred to make parameters setting. Zheng et al. varied the 
parameter � range ( � ∈

{
10−4, a × 10−3, b × 10−2, c × 10−1

}
 , 

where a, b ∈ {1,2… , 9}, c ∈ {1,2… , 5} ) for LASSO in MFN, 

while the best result was attained when � = 0.06 and � = 0.003 
[32]. In our study, the parameter �1 was varied in the range 
(  �1 ∈

{
� ×

[
10−4, 10−3, 10−2, 10−1

]}
, � ∈ {2,3, 4,6, 8,9} ) , 

where � was set to multiples of 2 and 3 ( 𝛼 < 10 ). The range of 
�2 was set according to the parameter standard of Tong et al. 
[5] ( �2 ∈

{
10−3, 10−2, 10−1, 100, 101, 102, 103

}
 ). Since the 

first parameter has a greater influence on the result in elastic 
network, the secondary tuning was mainly used for the first 
parameter �1 . The best classification results were obtained in the 
range from 10−4 to 10−2 of �1 according to the first classifica-
tion results. Classification accuracy can be improved with the 
increased number of � values [63]. So the range (from 10−4 to 
10−2 ) of �1 was varied further. The range of � would include all 
positive integers less than 10. Finally, E-LDMN-D3 achieved 
better classification performance at �1 = 0.05 within the more 
specific range, but the second tuning did not bring obvious 
improvement for E-LDMN-D2. The optimizations of parameter 
�1 in all networks are shown in Fig. 6 and the first parameter 
tuning of E-LDMN-D2 is depicted in Fig. 7.

Brain regions and brain structure analysis

We performed statistical analysis on the differential brain 
regions of morphological measures in the D2 phase, after the 
comparison between the static and dynamic features. Since 
CT and SA got the best performances in the D3 phase, we 
also took the D3 phases of these two measures into account. 
In total 57 main brain regions with overlapped measures 
were implemented further analysis. As shown in Fig. 8, 

Fig. 5  The classification accuracies with varying number of selected 
features

Table 3  Classification results of 
tenfold cross validation

ACC Accuracy, SEN Sensitivity, SPE Specificity, AUC  Area under the curve

ACC SEN SPE AUC λ1 λ2 p

L-LDMN-D2 78.26% 87.25% 61.67% 83.12% 0.0090 – 0.0002
L-LDMN-D3 75.44% 89.20% 58.33% 71.30% 0.0008 – 0.0002
E-LDMN-D2 84.62% 93.00% 73.33% 92.46% 0.0090 0.001 0.0002
E-LDMN-D3 81.38% 90.25% 69.58% 80.47% 0.0500 1 0.0002

Fig. 6  Regularization parameter λ1 ( λ ) with α including all posi-
tive integers less than 10. The value of λ2 are set to 0.001 and 1 for 
E-LDMN-D2 and E-LDMN-D3, respectively. The dotted lines are 
located at the extreme points of the network classification perfor-
mances
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different colors are used to represent brain regions that have 
different number of morphological measure overlaps.

The main morphological differential brain regions were 
located in cingulate gyrus [64, 65], insular lobe [65], para-
hippocampal gyrus [65], olfactory cortex [66], partial front 
lobe (inferior frontal sulcus, frontal pole, operculum fron-
tale) [67], partial parietal lobe (parietal operculum, supe-
rior parietal cortex, the parietal lobe in groove) [67], partial 
occipital lobe ( transverse occipital sulcus, anterior occipi-
tal lobe) [64], and transverse temporal gyri [65, 68]. The 
detailed information for each main morphological differen-
tial brain region is provided in the Supplement Table 1.

We used the LDMN under the best classification perfor-
mance for network structure analysis to characterize clini-
cal significance. Since the brain structure of MCI-NC has 
similarity to MCI-C, and most of the data did not satisfy the 
normal distribution. The chi-square test was carried out on 
the network connections between group MCI-C and MCI-
NC with p < 0.0001 (uncorrected). The cerebral regions con-
nected by these difference links mainly included anterior 
hippocampal [65], cingulate gyrus [64, 65], insular lobe 
[65], frontal pole and operculum [67], partial occipital lobe 
(parietal-occipital, occipital belly) [64], superior temporal 
gyrus and sulcus [65] and tectum [67]. As the abnormal 
links were mostly long connections across the hemisphere, 

which may be related to information transmission, we also 
analyzed the global efficiency of the two groups by t test 
and the result showed that significant changes occurred 
(p = 0.012 < 0.05).

The difference of the connection averages between group 
MCI-C and MCI-NC was computed by ( avgc − avgnc ) to fur-
ther reveal the structural changes. The negative difference 
indicated that the relationship of two brain regions con-
nected by this link was decreased in MCI-C. Conversely, it 
indicated the relationship was enhanced when the difference 
was positive. Figure 9 illustrates that decreased links were 
shown in most of differential connections. The specific p 
values are presented in the Supplement Table 2. The same 
analysis was also performed on the global efficiency aver-
ages and the declined global efficiency was found in MCI-C 
compared with MCI-NC.

Comparison with other methods

We compared the present results with the state-of-the-art 
results, which also used MRI data from the ADNI database 
to predict MCI conversion.

As Table 3 demonstrated, the proposed method achieved 
competitive performance both in the metrics of ACC and 
SEN. Among all results in Table 4, the best classification 

Fig. 7  The first elastic-network 
tuning in E-LDMN-D2. 
( λ1 ∈

{
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performance was obtained by Seyed et al. [11].The high 
accuracy was mainly due to the combination of multimodal 
data in which the functional-MRI (f-MRI) complemented 
the finer dynamic information lacking in s-MRI [11]. 

Single modal (s-MRI) was used in the proposed method 
which achieved better accuracy than the single modal 
result (s-MRI) in study of Seyed et al. (92.31% > 89.40%), 
and combining multiple modes may further improve our 

Fig. 8  The main morpho-
logical differential brain regions 
selected by dynamic features of 
multiple measures. The different 
colors represent the number 
of overlaps with different 
measures. The green area is the 
region selected by two cortical 
measures (Two-overlap). Simi-
larly, purple stands for Three-
overlap, and pink represents 
Four-overlap

Fig. 9  The significantly dif-
ferent brain network connec-
tions in MCI-C compared with 
MCI-NC (p < 0.0001). The 
orange and blue lines indicate 
the significantly increased and 
decreased interregional relation-
ships between the correspond-
ing regions, respectively. The 
six brain lobes are represented 
by different colors
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classification effect. Besides, it is worth noting that the 
proposed method obtained more excellent sensitivity than 
[11]. The high sensitivity is considered to be advantageous 
for confident MCI diagnosis, which can provide potentially 
clinical aid in early intervention [69]. Our proposed method 
employed the dynamic morphological feature that utilized 
the longitudinal evolution information more sufficiently and 
provided a good basis for the superior classification results. 
Similarly, Sidra et al. [10] also obtained nearly 90% clas-
sification accuracy based on progression information by 
synthesizing information from multiple time points. There-
fore, we believe that the full use of evolution information is 
conducive to improving classification accuracy. Sun et al. [8] 
gained a commendable accuracy using longitudinal informa-
tion combined with the anatomy of the whole brain. Also 
from the longitudinal standpoint, our proposed method con-
structed the cerebral network combining multiple morpho-
logical measures from the perspective of the whole brain. 
These indicate that the prediction of AD benefits from the 
whole brain perspective.

Discussions

Analysis of classification results

The comparison result of the static and dynamic features 
proves that more progress information is helpful for the diag-
nosis of MCIs. From the network classification results, the 
elastic-network based method achieved better performance 
than the LASSO based approach which is consistent with 
previous study [62]. The classification results on basis of CC 
performed better than other network attributes and the ED 
has limited diagnostic value of MCIs. The fusion of the net-
work properties did not improve the classification accuracy, 
which may be associated with the plane-based classification 
mechanism of SVM [70].

Wei et al. found that more stable and higher classifica-
tion accuracy can be obtained from the short-term predic-
tion (12 month) compared with the long-term prediction 
(18 month) [15]. From Yuan’s research, we acknowledge 
that MCI-NC and MCI-C gray matter atrophy occur differ-
ently [71]. The atrophy in MCI-NC is later than MCI-C, and 
the significant changes of MCI-C have been clearly reflected 
in M12 [71]. In our study, the best prediction performance 
was obtained in the second stage (from baseline to month 
12) with the superior accuracy 92.31%, which shows that 
the morphological difference between MCI-NC and MCI-C 
in the second phase is more significant than the third phase. 
Therefore, we deem that the second phase would be a better 
clinical diagnosis period. Longitudinally, the significance 
difference of brain atrophy between MCI-C and MCI-NC 
presented a non-linear trend, which may be due to some 
compensation mechanism of the brain. In addition, we 
found that with disease progression, the alterations of corti-
cal measures differed. The significant difference between 
MCI-C and MCI-NC of CT and AREA achieved the best 
recognition effect in the third stage, while SD, GH and VOL 
were in the second stage, which may be related to the diver-
sity of AD progress.

The results of randomization tests showed that in both 
LOOCV and tenfold cross validation, the main results are 
significantly higher than the random performance (p < 0.05) 
with statistical significance [59, 60]. While compared with 
LOOCV, a slight decrease was happened in tenfold cross-
validation results. We have already used a filtering feature 
selection algorithm F-score to prevent over-fitting, and only 
a small part of features (far less than the number of subjects) 
were employed when the highest classification accuracies 
were achieved in LOOCV results [47]. Notably, the trends 
that D2 stage is better than D3 phase and the elastic net-
work-based method is superior to the lasso based approach 
in classifying MCIs are expressed both in LOOCV and ten-
fold cross-validation results, proving the robustness of the 

Table 4  Comparison with recent state-of-the-art results based on ADNI database

CT Cognitive test, NM Neuropsychological measures, ACC Accuracy, SEN Sensitivity, SPE Specificity, AUC  Area under the curve, TSVM 
Transductive support vector machine, NPC No parametric classification

Author Data Subjects Manner ACC SEN SPE AUC Year Method

Moradi [79] MRI/CT 164C/100NC Cross-sectional 82.00% 87.00% 84.00% 0.9020 2015 TSVM
Wei [15] MRI 76C/83NC Longitudinal 76.39% 65.57% 84.34% 0.8130 2016 SVM
Liu [69] MRI 117C/117NC Cross-sectional 79.25% 87.02% 75.54% 0.8344 2016 SVM
Minhas [10] MRI/NM 16C/13NC Longitudinal 89.66% 87.50% 92.31% – 2017 NPC
Tong [5] MRI/CT 171C/129NC Cross-sectional 84.10% 88.70% 76.50% 0.9170 2017 SVM
Sun [8] MRI 67C/43NC Longitudinal 92.00% 95.00% 90.00% 0.9400 2017 SVM
Hojjati [11] MRI/fMRI 18C/62NC Cross-sectional 97.00% 95.00% 100% 0.9800 2018 SVM
Minhas [80] MRI/NM 54C/65NC Longitudinal 84.29% 70.36% 92.31% 0.8893 2018 SVM
Proposed MRI 43C/35NC Longitudinal 92.31% 100% 82.86% 0.8465 2019 SVM
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dynamic features. In addition, the main results of LOOCV 
and tenfold cross validation all passed the permutation test. 
Therefore, we deem that the small decrease in the accuracies 
of tenfold cross validation compared to LOOCV is mainly 
due to insufficient model training as the result of limited 
samples, rather than over-fitting of LOOCV. The results of 
LOOCV are reliable.

Analysis of characteristic brain regions and LDMN 
structure

In the main 57 morphological differential brain regions, the 
left and right brains were basically symmetrical [24]. While 
the number of ROIs in the right brain was slightly more than 
the left, which consists with the right brain being more sen-
sitive to human memory [72]. The fact that the morphologi-
cal characteristic brain regions mostly overlapped with the 
ROIs in previous AD and MCI research proves the dynamic 
morphological feature has certain robustness.

The difference of LDMN structure between MCI-NC and 
MCI-C indicates that the changes in the cortical structure of 
the brain region significantly affect the relationship among 
cerebral areas. Consistent with previous studies, the struc-
tural links showing significant difference between MCI-C 
and MCI-NC were mainly long-range connections across the 
cerebral hemisphere [16]. The abnormal long-range connec-
tions might mean a change in the information transfer path of 
the patient group across global brain areas. Further analysis 
of network attributes suggested that the global efficiency of 
MCI-C declined than that of MCI-NC. The MCI-C showed 
the decreased connections between mostly cerebral regions 
compared to MCI-NC [32], which might indicate descending 
efficiency of collaborative work between these brain regions. 
The decreased links also demonstrate that the similarity of 
brain regions would subside during the conversion from 
MCI to AD, as the connections of LDMN reflect a similar 
relationship between cerebral regions.

The affected brain regions found in our study in terms 
of dynamic features, were mainly located in limbic, insula, 
frontal and occipital lobes. Structures of parietal and tem-
poral lobes were also affected. According to the histopatho-
logical staging, MCI belongs to the limbic stages of AD 
[73, 74]. The key characteristics of the stages are the severe 
involvement of the transentorhinal and entorhinal regions 
and higher order association areas of the neocortex, as well 
as interrupted connections between components of the lim-
bic loop at multiple sites [73]. The limbic loop plays an 
important role in maintaining memory function and emo-
tional balance, and these special sites are most prone to 
AD-related pathology [74, 75]. The abnormal limbic loop 
components between MCI-C and MCI-NC were detected in 
our study, which may hamper the exchange of data between 
the higher order components of the limbic system and the 

prefrontal, occipital cortex [74]. The change of temporal 
lobe is related to the accumulation of neurofibrillary tangles 
and neuropil threads in the hippocampus [76, 77]. Parietal 
lobe has sensory centers and many other important areas, 
whose abnormality may result face agnosia and is an impor-
tant clinical manifestation of AD [74, 78]. These affected 
regions all have been extensively reported in previous AD 
and MCI studies, which demonstrates that these characteris-
tic areas are more significant in the development of AD and 
more attention should be paid to them clinically.

Possible reasons for the excellent performance 
of LDMN

The satisfied performances in prediction from MCI to AD 
indicate the practicability of our method. Compared with 
other longitudinal research, our study used the new longitu-
dinal biomarker “the dynamic morphological feature” which 
considers the pathological information evolving over time. 
Existing longitudinal studies mostly used the longitudinal 
data as a criterion to select subjects, finally the baseline data 
was selected for classification and data analysis [8, 10, 11], 
which still belong to a kind of “cross-sectional’’ study. The 
dynamic morphological feature used in our method reflects 
the course of disease progression and complements the evo-
lution information in time dimension of s-MRI, providing 
richer information for disease conversion prediction. The 
feature enhances the difference between MCIs (MCI-C 
and MCI-NC) in s-MRI data, and is more sensitive to the 
recognition of two kinds of MCI. By adopting the multiple 
dynamic morphological features, the classification and pre-
diction abilities of LDMN were further improved.

The LDMN combined multiple cortical measures (CT, 
SA, VOL, SD and GH) to build brain networks. These meas-
ures are thought to be closely related to the development of 
AD and MCI [39]. The fusion of multi-measure features 
ensured the LDMN included more detailed and compre-
hensive information [32, 41]. Meanwhile, the use of MMP 
atlas provided a boost for the excellent classification results 
due to finer brain areas parcellation [11]. In addition, the 
application of sparse multiple regression model can more 
fully reflect the nature of brain network connections [32, 
62]. Different from the commonly used pair-wise correlation 
network, which only considers the relationship between the 
two simple brain regions [62], the multivariate regression 
model in our study takes all cerebral regions into considera-
tion, according to that AD and MCI are accompanied by 
multiple brain regions atrophy usually [22, 23].

Previous study showed that sparse regression can be 
employed to construct networks and achieve commend-
able classification performance [25]. We utilized the 
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elastic-network method to integrate the multiple dynamic 
morphological features. Elastic networks, as a robust and 
more applicable sparse regression method, also obtained 
better classification ability than LASSO regression in our 
study. Compared with LASSO, elastic network has one more 
parameter ( l2-norm) which can greatly affect the calculation 
result and work well in solving the grouping effect [43]. 
Therefore, with l1 being for automatic variable selection and 
l2 encouraging grouped selection [62], the integration of l1 
and l2 significantly improved the construction of LDMN. 
A larger range of parameters was set for optimization and a 
more reasonable two-level tuning method was took for tun-
ing, which also ensured the superior classification results.

Limitations and future directions

Due to the limitation of subjects’ number, the conclu-
sions need to be further validated on a larger data set in 
future work. The hippocampus and amygdaloid nucleus are 
important clinical features for AD patients and MCI sub-
jects, while our study was based only on the cerebral cortex. 
Subsequent work will attempt to integrate the cortical and 
subcortical features for prediction. In addition, the neuropsy-
chological measure is also a commonly used biomarker in 
neurological diseases studies. The combination of different 
biomarkers is also our follow-up focus.

Conclusion

The dynamic morphological feature is proved to be a more 
sensitive biomarker for predicting the conversion from 
MCI to AD in our study. Based on the biomarker, the cer-
ebral similarity network was constructed with multiple 
morphological features using sparse regression algorithm. 
The dynamic multi-morphological network integrates the 
multiple cortical measures, incorporating the longitudi-
nal evolution information of the MCI conversion process. 
The proposed method achieves an excellent performance 
in MCI conversion prediction and provides possible assis-
tance for clinical diagnosis. In addition, the analysis of 
LDMN connections offers an interesting perspective for 
revealing the complex lesions of AD.
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